Archive for August, 2019

3D printing, additive manufacturing, is heading towards a sustainable future.

3D Printing Heading Towards a More Sustainable Future

3D printing, additive manufacturing, is heading towards a sustainable future.3D printing, also referred to as additive manufacturing, has captured the imagination of consumers, product designers and manufacturers alike over the last decade. We have witnessed the technology go through a hype cycle and come out the other side a more mature and grounded technology. No longer are people predicting a 3D printer in every home; however, product development engineers and the manufacturing industry have seen widespread use of the technology grow as material selection has increased and test use-cases in the aerospace and automotive industries have proved wildly successful.

During the major 3D printing hype cycle of the mid 2010’s, 3D printing technology was being touted as a green technology that was on the cusp of revolutionizing the way we build products and conduct business. At the time there were green components to the technology, but as a whole, it could not necessarily be considered environmentally friendly. Fast forward a decade, and we now see the technology heading towards a more sustainable future through advancements.

3D Printing Plant-Based Plastics

Plastic pollution is a global problem. Microplastics can be found in nearly everything—from the food we eat to the deepest depths of the ocean. Plastic, specifically ABS (Acrylonitrile Butadiene Styrene), is a top material used in 3D printing; however, there has been a push to develop more environmentally friendly materials, such as PLA ((Polylactic Acid). “PLA is manufactured out of plant-based resources such as corn starch or sugar cane, making PLA much better for the environment because they are made from renewable resources.” (Fabbaloo)

“PLA plastics are more environmentally friendly. Unlike other thermoplastics that are petroleum-based, they are made from renewable resources such as corn starch, tapioca roots, or sugar cane. PLA is also much easier to print with compared to ABS; printing can be completed at higher speeds without a heat controlled surface or harmful emissions. Not only do they tend to have a smoother and more appealing appearance, but they can also be used for food packaging being that they are made from food-based materials. However, there are some major limitations to using PLA plastics. Primarily, they are less sturdy then ABS plastics and can become deformed from heat, making them unsuitable for high stress applications.” (Fabbaloo)

While the materials used in 3D printing aren’t 100% sustainable yet, there is an alternative that many people have turned to, filament recyclers. Whether you purchase a filament recycler or use a service, you are reducing waste and recycling materials that should not be in a landfill.

Decentralized Manufacturing

The concept of 3D printing is to produce a part on demand thus reducing shipping and warehouse costs. The aerospace industry has been successful in producing highly customized parts locally that can be used in airplanes. These customized parts often have highly specialized and complex designs that can reduce weight, thus lowering fuel consumption and greenhouse gases.

Many researchers think the capability to make such complicated parts, and resulting gains in energy efficiency, may offer the greatest environmental benefits from additive manufacturing. (Fast Company)

Manufacturing Material Waste

Traditional manufacturing methods take a piece of material and cutaway at it until the final product is formed—there is a great deal of waste that comes with subtractive manufacturing. On the other hand, additive manufacturing produces a product layer-by-layer until the final product is complete, leaving substantially less waste. Yes, large designs will require supports that will need to be cleared away in post-processing, but on average less waste is produced.

As the additive manufacturing industry continues to grow and mature, we suspect that new ways to reduce material waste will be of concern.

As consumers and businesses start focusing more on sustainability, we know that 3D printing materials and waste reducing methods will take center stage. While the technology is not currently a “green technology” with research and advancements it can certainly become more environmentally friendly.

______

3D Innovations is a Product Development Company – from the 3D Design to a fully functional 3D Prototype & Product.

Subscribe to the 3D Innovations newsletter on our Facebook page!

Connect with us on TwitterFacebook & LinkedIn today.

Combining 3D manufacturing (3D printing) and traditional manufacturing methods for success.

Combining 3D Manufacturing & Traditional Manufacturing for Success

Combining 3D manufacturing (3D printing) and traditional manufacturing methods for success.In recent years the conversation around 3D manufacturing and traditional manufacturing methods has shifted—no longer are these viewed as competitors, but instead as complimentary manufacturing methods. Each method, additive manufacturing and subtractive manufacturing, has its own benefits and shortcomings, they are not mutually exclusive.

Exploring 3D Manufacturing

Additive manufacturing, or 3D printing, is a manufacturing method that builds an object layer by layer, with each layer of material the object is closer to completion.

A CAD file feeds the 3D printing machine the information that it needs to create the object. “Depending on the technology, the 3D printer deposits material, selectively melts and fuses powder, or cures liquid photopolymer materials to create parts based on the CAM data. The 3D printed parts often require some form of cleaning and finishing to achieve their final properties and appearance before they’re ready to use.” (Formlabs) Currently, the most common materials used for additive manufacturing are plastics and metals. There are a range of other materials that have been developed, but are not as widely used (i.e. ceramics, wood and glass).

Additive manufacturing is ideal for a range of product development and manufacturing applications—prototyping, tooling, highly customized parts and short-run productions to name a few. 3D manufacturing technology excels when it comes to product design. Complex geometries offer a high degree of design freedom that traditional manufacturing methods just can’t reach.

Exploring Subtractive Manufacturing

“Subtractive manufacturing is an umbrella term for various controlled machining and material removal processes that start with solid blocks, bars, rods of plastic, metal, or other materials that are shaped by removing material through cutting, boring, drilling, and grinding. These processes are either performed manually or more commonly, driven by computer numerical control (CNC).” (Formlabs)

As with additive manufacturing, a CAD file is used to feed the design data to the manufacturing tool. These instructions tell the tool where to make cuts, holes and channels until the unnecessary material is chipped away and the object is complete.

Subtractive manufacturing is suitable for prototyping, tooling and end-use parts. This technology shines when it comes to high-volume production runs for end-use parts.

Manufacturing Your Product

Since these manufacturing methods are not mutually exclusive, they are often used together during the product development process.

Additive manufacturing is used to make initial prototypes and functional prototypes at a reduced cost with quick turnaround times. Small parts and complex geometries are not a problem for this technology.

In the final stages of product manufacturing, it makes sense to utilize subtractive manufacturing methods for large volume production runs. This technology is much faster when it comes to making large parts and end-use products.

“In manufacturing, subtractive and additive processes often complement each other in the production of tooling, jigs, fixtures, brackets, molds, and patterns. Manufacturers often use plastic 3D printed parts for fast, custom, low-volume, or replacement parts and opt for subtractive metal processes for higher volumes or parts that are subject to more extreme mechanical stress and strain.

Utilizing both additive and subtractive manufacturing results in a hybrid process. This allows product designers and manufacturers to combine the versatility and quick turnaround times of additive manufacturing with the strength of subtractively produced parts.” (Formlabs)

Today’s manufacturing landscape is much different than it was even five years ago, using both technologies during product development is often best practice.

______

3D Innovations is a Product Development Company – from the 3D Design to a fully functional 3D Prototype & Product.

Subscribe to the 3D Innovations newsletter on our Facebook page!

Connect with us on TwitterFacebook & LinkedIn today.

Questions to ask a potential manufacturing partner for your hardware startup.

The Search for a “Perfect” Manufacturing Partner

Questions to ask a potential manufacturing partner for your hardware startup.Manufacturing a new product is a challenge but finding the right manufacturing partner doesn’t have to be. Finding the perfect manufacturing partner for your hardware startup is going to take a bit of upfront research but, trust us, it will make the entire process much smoother later on.

Below are five questions to ask potential manufacturing partners on your search for the perfect match.

Do you have experience manufacturing a product similar to mine?

All manufacturers have experience, but your goal is to find a manufacturer that has experience building a product similar to yours in your market segment. Chances are that if they have experience building a similar product, the number of challenges that arise will diminish. Also, ask to see product samples so that you can get a feel on the quality of work they produce.

For instance, if you are manufacturing a baby spoon find a manufacturer that has a great deal of experience in the baby product consumer market segment. Having a manufacturing partner that is knowledgeable about the industry you are entering means that they will be up-to-date with best practices, safety standards, and will have the ability to offer helpful insight.

What is your minimum production volume?

Traditionally, startups need to start with small production runs and then scale up. You may find that some manufacturers would rather not work with your hardware startup because of the low production volume—if this is the case, it is better to know this at the beginning of your talk than weeks down the road. In other cases, they may be willing to work with you on scope and budget because they understand the long-term potential you have as a client.

Will you be able to scale with my business?

Not all manufacturers will be able to scale with your business. As your startup grows, the number of units you need will increase as well. Your initial manufacturing partner might be great at prototypes and low volumes, but higher volumes may pose a problem. Minimize production delays by meeting with other potential manufacturing partners that are able to adequately meet higher volume needs. You don’t have to stick with just one manufacturer.

What is your preferred method of communication?

Open communication is key with any successful business partnership. You want to feel comfortable that your manufacturing partner will reach out to you when there is a question, issue or the need for clarification. Whether they prefer phones calls or emails, make sure that you are also comfortable with their preferred communication method.

When is the best time for a factory visit?

Your manufacturer is critical to your business’ success, so open communication is mandatory. It is imperative that you know and trust your manufacturer, before working with them. This is true whether you are manufacturing close to home or in another country. Phone calls and emails are great, but a visit to their location is highly recommended. Visiting the facility lets you meet the factory workers and see the facility. You want to feel comfortable that your product is in the right hands, and an on-site visit will do just this.

Other items to consider: check their client references, understand your startup’s cash flow and be prepared to compromise on the manufacturing timeline.

Doing your research early-on will help make the transition to manufacturing much smoother and less stressful.

Now here is what your future manufacturing partner wants you to know.

Have additional questions about manufacturing your product? Send us an email at info@3d-innovations.com

______

3D Innovations is a Product Development Company – from the 3D Design to a fully functional 3D Prototype & Product.

Subscribe to the 3D Innovations newsletter on our Facebook page!

Connect with us on TwitterFacebook & LinkedIn today.